解读LED照明应用领域两大误区

    最近几年,LED照明的投资“大热”,甚至可以说是狂热。由于应用中出现诸多问题的“无情”,迫使人们的头脑变得清醒起来,对LED照明的认识回归至理性的轨道,迫使一些头脑发昏的人开始冷静思考。透过“狂热”的现象,应该认真反思我们对LED照明的理解,以校正我们的思维方式、战略发展方向和科研的方法。然而,目前,不少人对LED光源、照明与应用的认识陷入两个误区。
  
误区之一:芯片等于光源
    电光源是有严格技术标准的,对照度、流明、显色性、色温、功率、光衰、谐波、寿命等多项指标有严格的要求,这本身就是百多年来电光源科技进步的结果。一个芯片或一个PN结,虽说是广义的光源,但就标准电光源而言,仅仅是一个发光元素,绝不是一个标准电光源。把芯片制造成为各种不同的标准电光源也不是简单的拼凑,而是要经过科学的设计与组合,需要大量的材料、电子等相关领域的技术创新,同时需要大量的科学试验,因此说芯片不等于现代意义的、有严格标准要求的电光源。
  
误区之二:光源等于照明
    有“光”就能照明,没错。火把、蜡烛、油灯都曾是历史悠久的照明光源,而且至今在一些无电的地区仍在发挥着照明的作用。但在21世纪的今天看来,那些毕竟是原始的照明,是与当时的社会形态与生产力水平相适应的照明。今天,如果用一个LED芯片与火把、油灯相比,一定会遭人耻笑,肯定会有人讲,LED照明是高科技。但一个不争的事实是,有的人就是把单体光源一个PN结作为光源、作为整个照明来看的,做着“自己忽悠自己”的事。
  
    由于LED光源自身的特点,如发光指向性很强,需要散热、驱动与光学处理,这就决定了LED作为光源必须是“整个系统的成熟”。从这个意义上讲,或者用现代照明的观点看,发光的不一定是“灯”,就LED照明而言,单体光源绝不等于照明。
  
    从一个PN结到现代意义的光源、到与环境相适应的科学照明、绿色照明有很长的一段路要走,这里包括对LED照明认识的不断深入,材料与技术的进步,装备制造与应用产品的二次开发,特别是系统的成熟、合适的性价比与规模化生产,做不到这几点,大规模推广应用则仅仅是一个美好的“愿景”而矣。

揭秘动车信号系统如何正常运行

    动车的信号系统又是如何运作的呢?根据《铁路客运专线技术管理办法(试行)》(200~250km/h部分),动车的信号系统主要包括计算机联锁系统、列车运行控制系统、调度集中系统和信号集中监测系统等。

    在这其中,调度集中系统(CTC)负责列车运行监视、车次号追踪、列车运行计划调整和临时限速设置等功能,相当于铁路的指挥中枢。列车运行控制系统(CTCS)则是监控列车安全运行的控制系统,包括列车自动监控系统(ATS)、列车自动防护子系统(ATP)、列车自动运行系统(ATO)三个部分。信号集中监测系统像是一只独立的眼睛,全程监控以上信号系统发生的所有过程。

    按照中国动车系统具备的“自动闭塞系统”,每两个车站之间的区间线路,会被划分成若干个小区段,每个区段大约1公里长,任何两列列车之间都必须保持间隔一个以上区段的距离,当某列车行驶的前方区段有其他列车时,该列车就必须自动停车等候。这套系统的运作有赖于动车信号系统的正常。

    铁轨本身是导电体,一个低压电源输出端分别连接在铁轨两根并行轨道上时,轨道之间就会产生电压。如果该区段内有车,金属导体的车轮就会在车轮区域内的轨道短路,使得该区段原本产生的电压为零。根据这个原理,监控部门就可以通过对每一个区段的电路检测来保障行车安全。即如果特定区段轨道电压为零,则发出区段占用信息,限制后面的列车行驶速度。

    但轨道电路容易受到气候环境等外部条件的影响。比如在冬季北方的下雪天及南方下冻雨的时节,铁轨上会被冰雪覆盖,冰雪层会阻隔铁轨和列车车轮的直接接触,也就无法形成短路,不会发出应该发出的列车占用信号。此外,铁道轨道表面生锈、风沙覆盖等也有可能导致发生上述状况。因此,还有一套计轴系统能够解决这个问题。

    计轴系统的原理是在铁路某一区段的入口和出口处设立监测点,来监测计算进入本区段列车的车轮数量和离开本区段列车的车轮数量,若进出的车轮数量一致,就说明途径该区段的列车已经完全离开,区段将处于空闲状态,下一列列车可以进入该区段;若进出的车轮数量不一致,则说明列车还在本区段内,区间处于占用状态,下一列列车暂不能进入该区段。

    通过上述的区段电压检测以及计轴系统,将会控制列车行驶过程中每个区段入口处的信号机,根据实际区段占用情况来确定红、黄、绿灯。通常有“红灯”、“黄灯”、“绿黄灯”和“绿灯” 四种表示状态。红灯表示列车要停车,黄灯表示要慢行,绿黄灯表示要中速行驶,绿灯则表示列车可以按照最高等级的限制速度行驶。

    同时,调度中心的监控台上也会显示区段占用、道岔位置和信号灯显示状态等信息,车站值班人员结合运行图和调度计划,通过控制台向联锁系统发出指令,联锁系统判断是否具备安全条件,发出控制指令,编排列车将要行驶的路径,同时将沿途的信号灯设置为绿灯,为列车开放线路,列车按照地面的信号指示沿着指定的线路行驶。

    这里要注意,联锁系统是通过对实际信息的采集,由计算机系统来判断安全防护条件是否满足,以及确定是否执行为列车开放某一条线路的指令。如果计算机系统通过检测分析判断发现线路中有某个区段被占用或计划开放的线路与已经开放的线路有发生冲突的危险,不满足开放线路的安全条件,那么计算机联锁系统将拒绝执行值班人员的命令,不开放新的线路。

    但是在列车运行过程中,实际发生的状况往往会产生变化,这时所有的实际运行信息,都会被集中到列车调度指挥系统中,TDCS会将原有的列车运行图与实际的列车运行状况进行比较分析,然后自动生成新的临时列车运行计划,并将新的运行计划经确认后自动下达到相关的各个车站和客货列车,逐步恢复铁路运输的正常秩序。

    如果向联锁系统发出指令的车站值班人员因故无法工作,车站的调度系统仍然能够自动化运行。这就要依靠分散自律调度集中系统(CTC)。分散自律调度集中系统相当于TDCS的一个分机,除了涵盖列车调度指挥系统的全部行车调度指挥功能外,还设立了一套计算机子系统,该子系统根据分散自律调度集中系统自动形成下达的运行图和本车站各个轨道区段的具体空闲占用情况,能够自行安排列车进站停车、列车发车和列车通过的作业,能够实现车站的无人干预和无人值守。

    如果说轨道电路检测、道岔口、信号灯等都是系统收集外界信息的触手,TDCS和CTC相当于接收所有信息后进行处理的指挥整个系统的大脑,铁路信号微机监测系统则是一只独立的眼睛,全程监控以上信号系统发生的所有过程。

    铁路信号微机监测系统将采集反映轨道电路工作状况的轨道电压、反映道岔转辙机工作状况的道岔动作电流、反映道岔是否被推到指定位置的道岔缺口、控制台上各种显示单元的状态等等一系列参数;若发现参数超出正常范围时,就会向监测中心发出报警信息,管理部门可立即派技术人员处理故障,以预防事故的发生。

家庭安装防盗报警设备须知事项

    防盗报警系统是以家庭用户为单位,当安装在家庭用户的探测器探测到有非法入侵或紧急求救信号,安装在家庭用户的报警主机接收到信号后,立即将报警信号通过总线传递到楼道上的单元控制器,再由单元控制器传递至中心控制器,中心立即发出声光报警,同时通过主机向电脑管理软件传送数据,在电子地图上显示报警用户的详细地址(用户姓名,单元房号,防区方位,防区类型),并且即时通过打印机将报警信息打印以被查验,中心值守人员处理后才能解除,从而有效即时地保证家庭用户的财产和人身安全。

    首先,防盗报警设备的安装地点,应该安装在哪里最合适呢!

    第一要有隐蔽性。安装防盗报警器是为了防盗,如果被罪犯看到防盗报警器,让盗贼提高警惕,并研究出避开防盗报警设备的方式,如此一来,防盗报警设备就成为了摆设,所以防盗报警设备必须得安装在暗处,不易察觉,但是又能“纵观全局”。第二,防盗报警设备安装时候有布线的麻烦,虽然现在市面上也出现了无线防盗报警设备,但是还是以有限的居多,所以在安装的时候应该考虑清楚,一次性确定安装以后不移动。防盗报警设备属于高频发射的电子产品,容易受大件家电磁场的干扰而接受信号不好,因此应该避免安装在大件家电旁边;而且,安装的高度有适中,便于操作,也要防止家中小孩碰触。

    其次,隐蔽性和安全性考虑后,还有美观性需要纳入考虑范围,设备的安装应该与家庭的设计融为一体,而不是非常突兀的出现。

    选择好防盗报警设备的安装位置,下一步就应该注意选择的辅助材料;在整个安装过程中,使用最多的就是各种线,这些线关系到防盗报警设备的正常工作,所以应该选择质量好的线,一般来说,PVC线管是不被推荐的,因为他硬度不都容易遭到外界破坏,比如被虫蚁啃咬或者液体腐蚀等,比较好的选择是镀锌钢管。相同的道理,替他的配件,也应该挑选质量好的。

    其实,现在的房屋在建造过程中,就已经将防盗报警设备甚至更多的家庭安防设备的纳入考虑设计的范围中,而我们在入住新家时候只需要按照其设计理念安装各种安防设备即可,保证安全、方便、美观。当然,如果您采用的无线防盗报警设备,您的顾虑将更小!

判断防盗系统常见故障有效方法

关于判断防盗系统里某部份出故障的简单方法:

普通报警主机(非总线型,如honeywell主机、艾礼富主机)
    1. 看主机的键盘灯,哪个防区灯长亮,说明哪个防区有故障。

    2. 找到有故障防区探测器看其供电是否正常(参照探测器参数),如不正常则作调整到其供电正常为止。然后是看探测器的探测范围内是否有令探测器错误发出报警信号的物体存在(即找干扰源),如:红外对射以及光栅之间是否有阻碍物(风是否会吹动树枝或花草等),被动探头的探测范围内是否有人在活动或小动物之类的东西(室内探头要注意是否风吹动窗帘或受到太阳光干扰等)。

    3. 如果前面所提到的都被排除,开始检查线路,看线路是否完好(即拿万用表测试时是否通路的),另有一最简单办法,把接到探测器端的两根信号线拆下并拧一起(常闭接法、若常开接法则不要拧一起),回去看主机键盘的防区灯是否灭掉,如果灭掉,则说明是探测器出问题,如果还不灭掉防区灯,则说明有可能是线路问题或主机自身问题。

    4. 把电阻接到主机的信号输入端上(即用电阻短路防区信号输入的两个端子、用于线尾阻输入方式、适用于艾礼富所有主机——未作相应编程情况下,同样适用于市面常见的HONEYWELL等主机),这时候再看键盘灯,如果灭掉,则是线路问题,如果还没有灭掉刚是主机有问题或者电阻有问题。(电阻是否有问题,可用万用表测试)

总线型主机(如AL7480、DS7400等主机)
    1. 看主机键盘灯,如显示not ready XXX (XXX代表防区号),则表示该防区有故障。

    2. 找到有故障防区探测器看其供电是否正常(参照探测器参数),如不正常则作调整到其供电正常为止。然后是看探测器的探测范围内是否有令探测器错误发出报警信号的物体存在(即找干扰源),如:红外对射以及光栅之间是否有阻碍物(风是否会吹动树枝或花草等),被动探头的探测范围内是否有人在活动或小动物之类的东西(室内探头要注意是否风吹动窗帘或受到太阳光干扰等)。

    3. 如果前面所提到的都被排除,则把一个电阻(电阻阻值参照地址码模块参数)直接接到与对射信号输子连接的两根信号线上(切记要把这两根信号线先与对射断开),如果这时候防区故障解决,则说明是探测器问题,如果还没解决就有可能是模块的问题,或线路问题。

    4. 则开始检查探测器是否有故障,如红外对射检测办法:供电正常情况下,先把对射调到对准良好状态(方法可看对射说明书、或与我联系索取调试手册)、用万用表测试其信号输出端子的通、断情况(即万用表测两输出端子在没有东西挡住情况下是通的或断开的,有东西挡住的时候是通的或断开的)、看清楚在没有东西挡住以及有东西挡住的时候其是否会在通、断之间切换。如果会切换,说明对射是正常的、反之则不正常。

LED显示屏系统基本结构与特性

    LED显示屏作为一项高科技产品引起了人们的高度重视,采用计算机控制,将光、电融为一体的智能全彩显示屏已经在广泛领域得到应用。其像素点采用LED发光二极管,将许多发光二极管以点阵方式排列起来,构成LED阵列,进而构成LED屏幕。通过不同的LED驱动方式,可得到不同效果的图像。因此LED驱动芯片的优劣,对LED显示屏的显示质量起着重要的作用。LED驱动芯片可分为通用芯片和专用芯片。通用芯片一般用于LED显示屏的低端产品,如户内的单、双色屏等。 


LED显示屏系统的基本结构

    目前,LED显示屏专用驱动芯片生产厂家主要有TOSHIBA(东芝)、TI(美国德州仪器公司)、SONY(索尼)、MBI(聚积科技)、SITI(点晶科技)等。在国内LED显示屏行业,这几家的芯片都有应用。

    由于LED是电流特性器件,即在饱和导通的前提下,其亮度随着电流大小的变化而变化,不随着其两端电压的变化而变化。专用芯片的最大特点是提供恒流源输出,保证LED的稳定驱动,消除LED的闪烁现象。具有输出电流大、恒流等特点,适用于要求大电流、高画质的场合,如户外全彩屏、室内全彩屏等。 

    LED显示屏的驱动一般是多通道恒流源(目前多数为16通道)再加上灰度控制等功能,IC上不集成DC/DC等电源模块,而在背光和照明驱动中,通道数会少一些,而且DC/DC转换模块通常是IC的一部分。LED显示屏非常注重屏的刷新速度和图像表现能力,高匹配度、高刷新率和高分辨率成为判断一个LED显示屏性能优劣的重要指标。这要求LED显示屏驱动IC通道间电流的高一致性、高速的通信接口速率以及恒流响应速度。显示屏驱动的技术着重于LED灰阶线性度及快速的输出响应。背光厂则采用多并多串的架构使得需要的操作电压高达50V~60V,这会使驱动IC所需要的工艺技术提高,在串高电压后每个LED的VF的差异度便需要列入考虑,这对整体的电源效率及定电流(ConstantCurrent)控制会有很大的影响。

虚拟网络化构建应走多样化道路

    单纯依靠成型的产品并不一定能够获得我们想要得到的结果,或者说,单纯依靠一家厂商的力量往往是难以满足用户层出不穷的问题的。

    以虚拟化为例,用户在构建虚拟化网络的时候,不论过程如何,其最终目标一定是相对明确的,那就是降低运营成本,提高运营效率。至于说是采用Nexus 1000V还是VEPA框架下的产品,往往对于我们来说并不像想象的那么重要。关键在于看哪种方式更适合自己的需求。

    以Nexus 1000V为例,Nexus 1000V是一个软交换机,可以和硬交换机统一网管起来.但是其也有一个很严重的问题,也是软交换最根本的问题——占用计算资源。在计算资源有限的情况下,用户往往并不希望拿CPU资源来换取交换功能,而是希望直接交由硬件交换机来完成。这个问题还是没有解决,所以它往往需要额外的服务器开销。

    那么,我们就要寻求更多的解决办法来实现虚拟化这个目的,H3C网络及安全产品部解决方案部部长康亮在接受51CTO记者采访时曾谈到:“业界除了思科以外的其他的厂家,大家都在说需要一个开放的、标准化的接口,所以我们要做的就是面向虚拟化以后新的以太网能做这个事情,那就是VEPA,基于VEPA做的产品我们可以开放互联,而且可以实现网络和服务的解耦合。”当然,支持VEPA不等于千篇一律,各家的产品也在细节方面有着各自的特点和长处,这样一来,留给用户的可选择空间也就更大了。

   另外,最近关注网络的朋友们一定会发现,OpenFlow的出镜率越来越高,这种被比喻为“C编译器”的技术实际上也为用户的广泛选择出了一份力。有较为尖锐的评论指出:“从产业链看,以思科为首的传统路由交换厂商没有任何理由支持这个技术,因为这个技术本身就是要打破传统路由交换的封闭性,把业务和平台分离,这明显是在挖传统路由交换厂商的墙角。”说法上有些极端,厂商也并不完全认同这样的说法,康亮谈到:“在数据中心通过openflow这样一个技术,用一个集中的控制器实现把所有的东西管起来,是一个很好的想法。但是我认为这项技术还是面临着产品化、商业化等问题,还要考虑到扩展性、时延性这些技术问题,目前OpenFlow技术好像还没有完全解决这些问题。”

    还有一个比较典型的例子,就是建设数据中心的二层网络,尤其是从小规模二层网络到超大规模二层网络的升级。简单来说,所谓的二层网络可以定义为同一个Vlan在泛数据中心的接入层上出现。当数据中心的规模非常大的时候,比如一万个接口,在所有接入层设备中只架设一个Vlan将给运维造成很大的麻烦(亚马逊就在基于虚拟机做集群,几千个虚拟机做集群做超高性能计算,所以一个集群里的所有虚拟机需要在同一个Vlan上面,未来的数据中心很有可能会经常采用此类模式)。康亮指出:“如果要实现一个Vlan能出现在所有接入层交换机的话就需要部署大量的生成树协议。如果不部署生成树协议,就会出现网络风暴。但是一旦部署了大量的生成树协议就会发现里面有四大问题,带宽利用率下降、收敛时间比较长、管理复杂、网络规模越大越难部署。”

    目前解决这方面问题的主要技术就是思科的VSS和H3C的IRF2,以及TRILL协议。VSS和IRF2的理念类似,都是把两台或多台交换机通过虚拟化的手段虚拟成为一台交换机,从而实现在低于一万台服务器的网络中不需要部署SPT就实现大的二层Vlan;而TRILL则主要面向超过一万台服务器的网络。在几种技术的对比过程中,思科VSS有一个问题是让大家比较纠结的,那就是VSS并不能支持思科全系列的产品,在思科S65等系列中才能获得很好的效果,并且完全不支持其nexus产品。IRF2在这方面则具有一定的优势,H3C从100G平台的核心交换机到接入层交换机产品(即基于全线交换机产品S12500,S9500E,S7500E,S5800,S5600,S5500,S5120EI,S3600系列)已经全部支持IRF2,这在一定程度上就保证了用户有限的投入可以换来满足其需求的产品。不过,思科VSS在单管理点、IP地址和路由实例等方面仍然具有相当强的优势,在消除传统园区网设计中非对称路由引起的单播泛洪等方面也有较为出色的表现。

    在各种网络技术的对比过程中我们发现,以万变应不变,以多样化的技术来解决几个甚至是一个问题,这或许才是我们真正需要的技术解决之道,毕竟没有人希望被某一个产品“绑架”,哪怕仅仅是形式上的;从另外一个角度来说,如何利用好公有的技术来为最终用户需求服务,在目前,仍然是厂商们亟需解决的问题——不可能人人都是自己动手利用开源工具来解决问题的技术大牛,如果厂商有更好的解决方案和技术,工程师们为什么会不热衷于“不劳而获”呢?

浅析光纤入户家庭布线注意事项

    FTTH网络终端最佳的安装位置是您家庭网络布线的线缆汇聚点以及无信号信号覆盖效果较好的位置。

    敷设入户的光缆不同于铜质线缆,极易损坏且难以修复,请您务必注意不要弯曲折断。

    入户光扦内可能有激光输出(属于不可见光),请您在平时使用过程中千万不要随意拆卸或用肉眼直视。

    新建的住宅建筑一般安装有家庭信息箱,请您不要随意拆卸,并请您在交房时确认弱电暗管的畅通。

    FTTH的施工需要您的大力配合,特别是光扦敷设入户时的开孔和FTTH网络终端设备的供电,以及能满足各类应用的家庭布线,都离不开您的支持。

简述高清网络摄像机安装与调试

    在一般的安防监控系统安装上,高清网络摄像机和普通摄像机的安装和调试方法基本相同,但必须要注意好镜头选配,因为镜头的质量不好,或者选配不好,很大程度上会影响到画面的清晰度,例如红外夜视系统的摄像机最好选用红外镜头,而1/3英寸CCD一般配用1/3英寸的镜头,1/2英寸CCD一般配用1/2英寸镜头,安装调试时镜头的聚焦调试必须调好,特别是摄像机的后焦面要调准,很多时候镜头的聚焦不清会引起图像的模糊,达不到高清晰的要求。另外摄像机的防护罩也不能忽视,枪式防护罩的前端玻璃不能采用一般的平板玻璃,而必须采用较好的光学玻璃,一般的平板玻璃对图像的解析力有非常厉害的消弱作用,选用球型罩壳更应注意,球面的曲率必须过渡光滑,最好不要把镜头对准球壳的上边缘,此处光的折射力较大,甚至会严重影响图像的清晰度。有一点很重要,就是不管哪种罩壳,最好罩壳内的光越低越好,镜头至罩壳的距离越短越好,这样能使镜头前的光污染减少到最低,有利于提高图像的清晰度。

    从现实产品和系统构成来看,百万像素级的高清应用基本成型,例如前端的百万像素摄像机、传输、接口、编码、图像处理应用、输出、显示等环节上的产品技术,以及应用系统平台,根据本专题的分析来看,基本上具备了运行的基础。虽然行业中大家普遍认为高清监控是行业和市场发展的必须趋势,但从真正的市场应用来说,目前各类行业用户还没有具体的现实应用心理准备。

    根据目前了解的信息来看,目前天视达、索尼、安讯士、海康威视等公司的产品已经或正在一些核心大城市中用到百万高清级的网络监控系统工程中,随着这些应用案例的增多,用户会越来越多的感知到高清监控系统不一样的图像效果和细节展现能力。并由样本案例的示范效应推动,吸引更多的对图像有高清要求的高端行业用户加入这个应用阵营,尤其是本身具备良好的局域网络或光纤资源的行业用户,他们要启动网络高清系统应用,是比较容易的事情。

    从用户的心理来看,他们对于图像的清晰度是首先在乎的。但他们也担心,以前用数模混用的系统,大家都感觉成熟稳定了,操作也得心应手,一下转到百万像素的高清上去,稳定性怎么样?在使用方面是否方便?当出了故障时,是不是很容易处理,还是要工程集成商来帮助处理?因此,样本工程应用案例是打消这类用户担心的最好办法,并且样本工程也有利于厂家和工程集成商去发现和解决具体应用过程中的问题,从而推动产品和系统的进一步完善。